O CEF orgulha-se do facto do artigo coordenado por um dos seus investigadores, João Costa e Silva, ter sido capa da revista Heredity, de Setembro.
Trata-se do estudo “Genetic-based interactions among tree neighbors: identification of the most influential neighbors, and estimation of correlations among direct and indirect genetic effects for leaf disease and growth in Eucalyptus globulus”, de João Costa e Silva em co-autoria com B M Potts, A R Gilmour e R J Kerr.
O estudo aborda a modelação e detecção dos efeitos genéticos indirectos associados às interacções entre árvores de uma determinada espécie, e a sua importância no âmbito da estimação de parâmetros genéticos e de respostas à selecção para características de crescimento e susceptibilidade a doenças.
Link do artigo: https://www.nature.com/hdy/journal/v119/n3/full/hdy201725a.html
Resumo: An individual’s genes may influence the phenotype of neighboring conspecifics. Such indirect genetic effects (IGEs) are important as they can affect the apparent total heritable variance in a population, and thus the response to selection. We studied these effects in a large, pedigreed population of Eucalyptus globulus using variance component analyses of Mycosphearella leaf disease, diameter growth at age 2 years, and post-infection diameter growth at ages 4 and 8 years. In a novel approach, we initially modeled IGEs using a factor analytic (FA) structure to identify the most influential neighbor positions, with the FA loadings being position-specific regressions on the IGEs. This involved sequentially comparing FA models for the variance–covariance matrices of the direct and indirect effects of each neighbor. We then modeled IGEs as a distance-based, combined effect of the most influential neighbors. This often increased the magnitude and significance of indirect genetic variance estimates relative to using all neighbors. The extension of a univariate IGEs model to bivariate analyses also provided insights into the genetic architecture of this population, revealing that: (1) IGEs arising from increased probability of neighbor infection were not associated with reduced growth of neighbors, despite adverse fitness effects being evident at the direct genetic level; and (2) the strong, genetic-based competitive interactions for growth, established early in stand development, were highly positively correlated over time. Our results highlight the complexities of genetic-based interactions at the multi-trait level due to (co)variances associated with IGEs, and the marked discrepancy occurring between direct and total heritable variances.