

FarmAC model

Nick Hutchings & Ib Kristensen

Training session 1

Schedule for day

- 09:00* 10:00 Overview of the science behind FarmAC (Nick)
- 10:00-11:00 Using the model via the user interface (Ib).
- 11:00-12:00 The users use the two example farms implement their mitigation measures
- 13:30 14:00 Summing up of the experiences from the day 14:00 14:30 Preparation for next training session

*Times are GMT

FarmAC model

- Focusses on livestock farming systems
 - Can be used for arable agriculture
- Intended to have wide applicability
- Simple enough that demand for inputs and parameters is manageable
- Complex enough to describe consequences of mitigation/adaptation measures
- Mass flow for C and N
 - Consistency between GHG and N emissions
 - Capture knock-on effects

Results from FarmAC

- N inputs, outputs and losses
- C inputs, outputs and losses
- Livestock and crop production
- Greenhouse gas (GHG) emissions
- Indicators

Structure of presentation

- Soil organic matter dynamics
 - Complex will consider briefly
- Arable farm (cereal cropping)
- Livestock
- Manure management
- Grazed grass

Soil organic matter

- Three types of soil carbon
- Fresh organic matter (FOM)
 - >e.g. crop residues, decomposes in months
- Humus organic matter (HUM)
 - partially stabilised organic matter, decomposes in years
- Resistant organic matter (ROM)
 - very stable organic matter, decades/centuries
- Temperature and moisture effects

Adaptation and Projection simulations

- Adaptation = simulate for many years to stablise soil model
- Projection = run model for 10-20 years to calculate results

Crop sequences

- Define for each crop
 - Crop products (e.g. grain, straw)
 - >Start and end dates
 - rainfed or irrigated
- Bare soil is a 'crop'
- No gaps in sequence
- Last day of last crop = first day of first crop -1

Year 1			Year 2		Year 3			<u>`</u>	Year 4
'		1	Bare soil		Bare soil				
	Spring barley	Bare soil	Spring barley		Winter wheat		Grass		

Crop products and residues

Yield modelling

- Potential yield (water and N unlimited)
 - ➤ for all crop products
 - input by users
- Calculate water-limited yield (soil water model)
- Calculate N uptake at water-limited yield
 - includes N in above and below-ground crop residues
- Calculate mineral N available
- Mineral N or maximum uptake determines yield
- Assume sufficient P and other nutrients

Calculating mineral N available (1)

- Mineral N available = mineral N input losses
- N inputs
 - **>**atmosphere
 - ►N fixation
 - > fertiliser
 - > manure
 - **>**urine
 - >mineralised soil, manure organic N, dung and crop residue N
- Does not distinguish between ammonium and nitrate

N fixation

- Calculate maximum N yield
- Calculate mineral N supply (fertiliser, manure, soil mineralisation etc)
- N fixation = NfixationFactor * (max N yield mineral N supply)

Calculating mineral N available (2)

- N outputs
 - >Ammonia emission, which varies between
 - fertiliser, manure, urine
 - application method
 - \triangleright N₂O and N₂ emission
 - N₂O via emission factor (varies between sources)
 - $N_2 = N_2O$ * factor
 - ➤N leaching is determined by soil water model

Mineral N available

Soil water model

Processing/storage losses

- Losses will occur from crop products that are harvested and stored
 - cut but not collected
 - ➤ losses during processing (especially silage making)
- Losses are subtracted prior to becoming available for feeding or export

Crop production is averaged

Livestock (ruminants)

- Numbers are entered as average annual population
- Important to include seasonal diets
 - >e.g. dairy cattle (crop growing season), dairy cattle (winter/drought)

Annual averaged population (AAP)

- \blacksquare AAP \equiv 365 feeding days \equiv results of a census
- Example 1:
 - Census finds an average of 1 beef calf, aged 6 months to 1 year (AAP = 1)
 - Feeding days = 183.25 = 0.5 year
 - ➤ Production = 2 beef calves per year

Annual averaged population (AAP)

- Example 2:
 - ≥ 10 dairy cattle grazed for 6 months, housed for 6 months
 - ➤ Define 5 cattle with grazing diet
 - ➤ Define 5 cattle with housed diet

Feed ration and production

- •Feed ration is input (feed items = crop products)
- Energy partitioning
 - Energy intake calculated
 - Energy partitioned between maintenance, growth and milk production
- Protein to faeces calculated using RedNex* equation
 - > Remainder partitioned to production
 - Protein availability may limit production
- Does not currently account for walking/climbing

^{*} RedNex - http://www.rednex-fp7.eu/

Manure management

Livestock housing

- Housing = any place livestock are kept when not grazingincludes corrals, stock yards
- ■NH₃ emission = emission factor * manure TAN
- ${}^{\bullet}CO_2$ emission = urine C
- C and N is added in feed waste and bedding
- Remaining C and N passes to manure storage

Manure storage

- ■NH₃ emission = emission factor * manure TAN
- ■N₂O emission = emission factor * total manure N
- $^{\bullet}N_2$ emission = factor * N_2O emission
- Runoff/leakage TAN = factor * manure TAN
- Runoff/leakage organic N = factor * manure organic N
- Remaining C and N available for field application

Grazed crop products and excretion

- For crop products used as feed items for livestock
- Surplus = Production of crop product > livestock consumption
- Deficit = Production of crop product < livestock consumption</p>
- For most crop products:
 - ➤ Surplus is exported from farm
 - ➤ Deficit is imported to farm
- Grazed crop products are an exception
 - ➤ Production must equal consumption

Grazed crop products

- Production of grazed products is specified at the scale of the crop
- If this production is not achieved, the model will report an error
- If this production is exceeded, the surplus production will be converted to crop residue

Enough production

More than enough production